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LETTER TO THE EDITOR 

Cartan's method of equivalence and second-order equation 
fields 

G Thompson 
Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 
3G1 

Received 27 August 1985 

Abstract. The theory underlying Cartan's method of equivalence is outlined and applied 
to second-order equation fields. In particular, the technique is used to obtain the canonical 
horizontal distribution associated to a second-order equation field-a construction which 
has been presented before but in a rather ad hoc manner. 

Some time ago, M Crampin, G E Prince and I investigated the inverse problem of the 
calculus of variations in a geometric context sufficiently comprehensive to allow for 
time-dependent systems (Crampin er a1 1984). Indeed, our main objective was to show 
how certain results of Crampin, valid for time-independent systems, could be suitably 
modified to allow for explicitly time-dependent systems (Crampin 1981, 1983). We 
viewed a second-order equation field as a vector field r on the space J'(R, M) 
(evolution space) which can be identified in a natural manner with R x T M ;  here, M 
(configuration space) is assumed to be a smooth m manifold. We showed that r could 
be used to define an m-dimensional 'horizontal' distribution on J ' (R,  M )  complemen- 
tary to the vertical distribution obtained by viewing J'(R, M )  as a vector bundle over 
R x M. Unfortunately, we had to introduce the horizontal distribution (I  shall refer 
to it here as X) in a rather ad hoc manner, though much of our paper argued that the 
choice of 5%' and the vector fields used to span it, was an auspicious one. 

In this letter I wish to demonstrate how Cartan's method of equivalence leads in 
a natural manner to the discovery of the distribution X. To render the sequel intelligible 
to the general reader, I shall briefly sketch the method of equivalence or, as it has 
come to be known, the theory of G structures, particularly as it applies to second-order 
equation fields (see also Cartan 1908, Sternberg 1964 and Kobayashi 1972). 

A G structure is by definition a reduction of the frame bundle 9 ( N )  of a smooth 
n-manifold N to a principal subbundle BG with structure group G; G is a subgroup 
of GL( n, R). If G is a subgroup of H, which is in turn a subgroup of GL( n, R), a G 
structure BG may always be extended to an H structure BH. On the other hand, if H 
is a subgroup of G, there does not exist in general an H structure B,. If such a BH 
does exist, it is said to be a reduction of BG to BH. Usually when one is given a G 
structure, one would like to find the smallest H structure to which it is reducible. The 
extreme case is when G is the trivial group and this of course is nothing but a complete 
parallelism on N. 

Cartan (1908) developed a technique for reducing the group of a G structure which 
has only been understood comparatively recently. I shall now outline this technique. 
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Firstly, BG has a canonically defined R"-valued l-form w, say. w is the restriction of 
a canonical form, which I shall also denote by w, on 9 ( N ) ,  and is defined as follows: 
let T :  9( N )  + N be the natural submersion, p E 9( N )  with T (  p )  = x, X E Tp9( N ) ;  
then w ( X ) ,  is defined to be the element of R" obtained by expanding T,X with respect 
to the frame p .  Suppose now that f is a diffeomorphism of N such that the induced 
diffeomorphism f of 9( N )  has the property that for any two frames pl, p 2  at x differing 
by an element of G, f( pl) and f( p 2 )  differ by an (in fact the same) element at G at 
f ( x ) ;  then f induces by restriction a diffeomorphism, also denoted by of BG fibred 
over f such that p w  = w. Conversely, a diffeomorphism F of BG fibred over a 
diffeomorphism f of M such that F*w = w is obtained by lifting f to BG in just the 
same way. 

Let the ith component of w be denoted by w i  and consider the R"-valued 2-form 
dw. Now, since the vanishing of the wi's corresponds to the vertical distribution, by 
Frobenius' theorem there must be a collection of l-forms 0; such that 

dw' = 6; A wJ. (1) 

Sternberg (1964) shows that the 0;'s can be chosen so that they satisfy the Lie algebra 
relations of the canonical Maurer-Cartan form on G modulo the wi's. Indeed, any 
set of 0;'s satisfying equation (1) has this property. Now if r = dim G, let r a  (a = 1, I )  

determine a distribution on BG which is everywhere transverse to the vertical. Then 
we may write 

dwi=aLjTa (2) 

for some functions a t  and Tjk on BG. The aij'S, Tfk's and r a ' s  in equation (2) are 
in general not unique, but neither are they arbitrary. A key part of Cartan's reduction 
technique lies in modifying these elements of equation (2) in such a way, roughly 
speaking, as to simplify the second term on the right-hand side of equation (2), which 
is known as the torsion, whilst at the same time preserving the Lie algebra relations 
satisfied by the aLjra"s. This technique is known as Lie algebra-compatible absorption 
of torsion. 

The basic theory underlying group reduction is described in detail by Sternberg 
(1964). Briefly it goes as follows. As I mentioned above, the torsion term in equation 
(1) is not unique; suppose, however, we fix a point p E BG and choose a subspace H 
of TpBG complementary to the vertical subspace. Then dwIH, that is, d o  restricted to 
H, defines an element of A2V*@ V, where for clarity I have put R" = V. Now G acts 
on BG of course, but also on A2V*@ V in a natural way. Consider next the vector 
space V*@ V*@ V. Then, since the Lie algebra g of G is a subalgebra of V*@ V (g 
consists of endomorphisms of V) we have that V*@g is a subspace of V*@ V*@ V .  
Now define 6: V*@ V*@ V+ A2V*@ V to be the canonical skew-symmetrising map. 
It is a routine calculation to show that for w E V*@g, S E  G 

(A2pt 0 P ) ( S ) ( ~ (  w)) = S(pf 0 Ad(S)( w) 1, (3) 

where p denotes the action of G on V, pt the contragredient action on V* and Ad the 
adjoint representation of G. It follows from equation (3), amongst other things, that 
S (  V*@g) is an invariant subspace of AzV*@ V under the action of G. Hence there 
is a well defined action of G on A2V*@ V/S( V*@g). Stemberg (1964) shows that 
the image of dwl, in this quotient space is independent of H and hence there is a well 
defined map C :  BG+h2V*@ V/6( V*@g). 
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Moreover, c satisfies for SE G, p E BG 

C(SP) = S ( C ( P ) ) .  (4) 

It follows from equation (4) that c ( B G )  is a union of orbits of the action of G on 
AzV*O V/6( V*Og). Let us assume that c (BG)  simply consists of a single orbit; such 
a G structure is said to be of constant type and most known examples seem to be of 
this kind. Then as Sternberg shows, one may select any vector v in c ( B G )  and c - ' ( v )  
will be a reduction of the G structure to an H structure, where H is the isotropy group 
of v. In practice it is rather awkward to work on the quotient space A2V*0 
V/S( V*Og); instead, it is more convenient to use the technique of Lie aigebra- 
compatible absorption to choose a complement to S (  V*Og) in A2V*0 V. The reduc- 
tion then proceeds essentially as before. 

It may happen that it is necessary to perform several reductions of a G structure 
BG before one obtains a reduction to an H structure with H as small as possible. When 
this is finally achieved it is then necessary, if H is not trivial, to embark on the other 
main procedure in the equivalence method, namely, prolongation. In this, one considers 
a new equivalence problem on a GI structure whose base is BH. However, I shall not 
discuss the technique of prolongation further in this letter. 

I shall now show how the foregoing theory can be applied to second-order equation 
fields. I shall use local coordinates ( t ,  xi, U') on J'(R, M )  where t is the canonical 
coordinate on R, (xi)  coordinates on M and ( u i )  velocity coordinates for the fibres 
of J'(R, M )  over R x M. To employ the technique of equivalence it is first necessary 
to decide which kind of coordinate transformations are to be allowed. In Crampin et 
a1 (1984), we introduced a 1 - 1 tensor called S, the local expression for which is 
(a/aui)O(dxi - u i  dt). We attempted to show that S is an essential geometrical 
ingredient of J'(R, M )  and it played a key role in our analysis. Accordingly, it would 
therefore seem natural to consider coordinate transformations which at least preserve 
S. 

Proposition. A diffeomorphism CP preserves S iff 0 is the lift of a diffeomorphism 4 
of R x M of the form t' = +( t ) ,  xi '= +'( 1, XI). 

Prooj Notice that if S is considered as a linear transformation in each tangent space 
of J'(R, M )  its image consists of the vertical subspace. It follows that if @ preserves 
S, it preserves the fibration of J ' (R,  M )  over R x M so that @ is fibred over a 
diffeomorphism 4 of R x M. Let 4 be given locally by t ' =  4(t ,  d), xi '=  4j(t, x'). Then 
it is easy to see by a calculation that 4 is given by 

., a+'/at + ui(a+J/axi) 
a+/a t  + ui(a4/axi)  

U' = 

together with the equations for t' and xi'. Since the Jacobian of 4 cannot vanish, it 
follows that the numerator and denominator in the expression for U" cannot both 
vanish. However, the denominator cannot vanish, which forces a 4 l a t  f 0 and a+/axi = 
0, and @ is of the form claimed. 

Another point to note from the form of CP given in the last proposition is that 
auj'lau' = a4J/axi-an observation which will be of use in achieving an initial group 
reduction. 
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It would appear that the largest (pseudo-)group of coordinate transformations 
worth considering are those of the type described in the proposition just proved. I 
shall choose a subgroup A of these transformations, namely those for which t' = t + a, 
where a is constant. This choice is motivated by classical mechanics where one usually 
considers time as being determined up to a choice of initial starting point. One might 
also consider the still smaller subgroup in which & # ~ ' / d t  = 0; however, any invariants 
of A are invariants of this smaller group. Generally one expects calculations to be 
harder the smaller the group, precisely because, since it is harder for two G structures to 
be equivalent, there are more invariants. Notice that the term 'group' is being used 
here in two distinct senses. To return briefly to the general picture, there is the group 
(or pseudo-group) or coordinate transformations as well as the group G which is a 
subgroup of GL(n, R). The two are related in that the collection of Jacobians of all 
coordinate transformations at a given point of N forms a subgroup of GL( n, R) which 
contains G as a subgroup. G will actually be a proper subgroup if it is required to 
preserve some more first-order geometric structure. This happens in G structures 
determined by second-order equation fields as I shall now explain. 

Suppose that the second-order equation field r is given by the equations x i =  
f'(t, x',~?). We may view this as the vector field a / a t + u ' ( a / a x ' ) + f ' ( d / a u ' )  on 
J'(R, M ) .  Next, choose a coframe on J ' (R,  M )  which is to be adapted, as far as is 
possible, to the geometry of the problem. An obvious choice is ( w ,  e', T') where w = dt, 
8' = dx' - u i  d t  and 7~~ = dui  -f' dt. This is a coframe which has been used frequently 
before (cf Crampin 1977, Prince 1983). Notice that r is related to this coframe by the 
relations 

(r, 0) = 1, (r, e ' )  = 0, (r, Ti) = 0. ( 5 )  

The group G is now obtained by requiring that it be consistent with the group A but 
also that r be preserved, that is, one requires diffeomorphisms CP of J'(R, M )  such 
that CPJ=r. The following equation gives the form of the group G where A{€ 
GL(m, R) and B{ is an arbitrary m x m matrix: 

Equation (6) expresses the most general possible change that can be undergone by 
the coframe ( w ,  Bi ,  T') if it is required to be consistent with A. Notice that in view of 
the remark following the proposition, namely that auJ'/au' = d4'/axi, the lower m x m 
block has to be identical to the central m x m block. One should always see if it is 
possible to make initial group reductions in this manner. (Actually, even if one did 
not impose this condition at the outset, it turns out in this case that one obtains it by 
applying the general procedure outlined above.) 

Thus far, equation ( 6 )  has been interpreted in terms of the geometry of J ' (R,  M ) ;  
however, it can also be interpreted in terms of a G structure with base J ' (R,  M )  and 
group consisting of ( 2 m  + 1) x (2m + 1) matrices of the form appearing in equation (6). 
In this interpretation, the entries in the matrices A{ and B{ are fibre coordinates. 
Moreover, the forms ( w ,  e', 7 ~ ' )  are a local representative of the canonical R2"'+'-va1ued 
form on the G structure. Using equation (6) ,  I now compute the derivatives of ( w ,  e', T') 
in the manner of equation (1). Notice that the Maurer-Cartan forms are given by 
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(2m + 1) x (2m + 1) matrices of the form ( U ; ,  and b; being arbitrary m x m matrices) 

(: :j :). 
0 bj a; 

Thus one obtains 

(7) 
0 

In equation (7) the Lie algebra-compatible absorption step has been performed. There 
is a zero in the torsion term corresponding to dw because w = d t  implies dw = 0. In 
the torsion corresponding to d d ,  any terms involving I3' can be absorbed into the 
non-torsion part because of the bj block leaving the terms in T' A 7rk and w A T'. 
Finally, in the torsion term corresponding to de', terms in w A 8.' and 13' A r k  can be 
absorbed in such a way as to preserve that Lie algebra relations by modifying the 
coefficients pjk and a;. Equation (7) exhibits the maximal absorption which can be 
effected using only the form of the Lie algebra relations and the fact that d o  = 0. In 
other words, we have not used the specific expressions for the forms 6' and T' in (6) 
but only our knowledge of form of the group and hence Lie algebra. 

The next step consists of calculating the torsion terms using ( U ,  s', d) and back- 
substituting from equation (6). This process is sometimes referred to as the 'parametric' 
calculation of torsion, as opposed to the previous step which is said to be 'intrinsic', 
in as much as it is independent of any local trivialisation, that is, choice of coordinates. 
In fact when we compute parametrically and mimic the intrinsic absorptions, which 
is absolutely essential, we obtain 

Moreover, uj and bj are given explicitly by the formulae 

In practice, one is not especially interested in the explicit forms of quantities such 
as those given by equations ( 9 a )  and ( 9 b ) ,  though these will be obtained naturally in 
the course of the calculation. On the other hand, one is very much interested in the 
coefficients of the torsion, for it is these which allow the possibility of group reduction. 
In equation (8), the torsion coefficients corresponding to dw and de '  are constant and 
so are of no use as regards the reduction technique. However, the torsion corresponding 
to d r '  is not constant and one must determine how it transforms under the action of 
G. To do this, we can determine the differential of the action from equation (8) and 
thus the action itself. 
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From the fact that d 2 d  = 0 one obtains from equation (7), using the fact that p j k  E 0 
and d o  = 0, 

dbj A @ - bj A d @  + da j  A d - a; A d d  + du, A w A ?r' - ujo A dn-' = 0. (10) 

The term involving du j  in equation (10) includes w and T', so we must wedge in a 
complementary set of the canonical 1-forms, say, U' A . .  . A om A O1  A . .  . A O m ,  so that 
only the value j = 1 in the term duj  A o A d will be significant. Equation (7) can be 
used in the resulting equations to eliminate the terms in d @  and d d .  (Alternatively, 
the last two steps can be performed in the reverse order. In the current problem the 
order indicated seems easier.) One obtains eventually 

(dui- bk+Uia{-dkaj) A A T A  8+(da ; -a jn  a i )  A 7T A 8 = 0  (11) 

where 

IT= T ' h . .  . A  7Tm and e =  e l A  . . . A  em. 
From equation (1 1) it follows by wedging with o that the forms da: - a; A a i  belong 
to the algebraic ideal generated by U, r i  and 8'. Hence we may conclude that 

. .  
d u i  + a i a i  - dkaj - b: = 0 mod( U ,  e', d). (12) 

Equation (12) implies that the action of G on the components of the torsion in (7)  
corresponding to d v '  consists of conjugation and translation. Accordingly, we may 
'translate U: to zero', that is, choose a vector in the complement to S (  V*@g) for which 
the a; are zero. We know the 'parametric' form of U ;  from equation (8) and we see 
that we have imposed the conditions 

B{ = -;A{Jf'/au'. (13) 

If we compare this to equation ( 6 )  we can interpret equation (13) as follows: we 
have reduced our original G structure to a GL( m, R) x GL( m, R) x (1)-structure and 
modified the original choice of w, 8' and n'. In fact the modified coframe of J'(R, M )  
is given by 

u = d t ,  B=dx ' -u ' d r  

and 

m i  = d u i  -f' dr -;(Jf'/du')(dx'- U' dt).  

We thus pass to a new equivalence problem in which the analogue of equation ( 6 )  is 

[!)=[A 0 :{ 0 A{ "ii". mi  
(14) 

It remains only to observe that the modified forms (a, e', mi) are precisely the same 
forms that in Crampin er a1 (1984) were denoted by (dr, e', $i) and that the horizontal 
distribution 2 is determined by the vanishing of the forms w and ni. 

The equivalence method can be continued to be applied to the new problem with 
reduced structure group. Naturally, as the process continues, the calculations become 
more cumbersome. One successively obtains more redefined coframes which depend 
on higher and higher derivatives of the 'data'-in our case the f " s .  I shall not give the 
details here as, amongst other things, they involve the technique of prolongation. 
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Suffice it to say, that the equivalence of second-order equation fields is one of a variety 
of geometric problems in mathematical physics to which the method of equivalence 
should be applicable. 

It is a pleasure to acknowledge numerous helpful conversations about the method of 
equivalence with G Wilkens, M Thomas, R Bryant, M Crampin and especially R 
Gardner. 
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